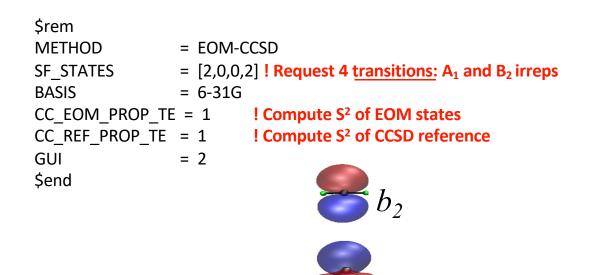



 Ψ_0 Reference

EOM-SF method yields:

 a_1

- accurate singlet-triplet gaps;
- accurate geometries and properties;
- describes closed-shell and open-shell low spin states.



BRUSHED WEEKLY BY THE AMERICAN CHEMICAL SOCIETY 🧠 🚬

Casanova and Krylov, Spin-flip methods in quantum chemistry, PCCP 22 4326 (2020)

- Import geometry (methylene.xyz) into IQmol
- Use triplet reference (charge=0, multiplicity=3)
- Request "diradical states" of expected symmetry (see frontier orbitals irreps)
- Request S² of CCSD and EOM wavefunctions to check for spin-contamination
- Look at the EOM amplitudes to assign state character.
- Important energy differences: between the EOM states (not reference-EOM).

	E	C ₂ (z)	σ _v (xz)	σ _v (yz)	linear, rotations	quadratic
A 1	1	1	1	1	z	x ² , y ² , z ²
A ₂	1	1	-1	-1	Rz	ху
B ₁	1	-1	1	-1	x, R _y	xz
B ₂	1	-1	-1	1	y, R _x	yz

Character table for C_{2v} point group

Product table for C_{2v} point group

	A ₁	A ₂	B ₁	B ₂
A ₁	A ₁	A ₂	B ₁	B ₂
A ₂	A ₂	A ₁	B ₂	B ₁
B ₁	B ₁	B ₂	A ₁	A ₂
B ₂	B ₂	B ₁	A ₂	A ₁

EOM-SF calculation of methylene LEAP INTO THE FUTURE OF CHEMISTRY

For each EOM-SF state you should get the following sections in the output

1 (B2) B

1) Excitation energies and orbital description

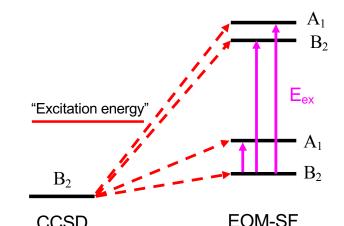
EOMSF transition 1/A1

Total energy = -38.97364719 a.u. Excitation energy = 0.0086 eV. $R1^{2} = 0.9887$ $R2^{2} = 0.0113$ $Res^{2} = 2.06e-06$ Conv-d = yes

Amplitude	Transitions	between	orbitals	
-0.6827	1 (B2) A		->	

_ (,		- (/ -
3 (A1) A	->	3 (A1) B
1 (B2) A	->	2 (B2) B
2 (A1) A	->	3 (A1) B
3 (A1) A	->	5 (A1) B
	1 (B2) A 2 (A1) A	1 (B2) A -> 2 (A1) A ->

Summary of significant orbitals:


Number	Туре		Ir	rep	Energy
2	0cc	Alpha	2	(A1)	-0.9633
4	0cc	Alpha	3	(A1)	-0.4731
5	0cc	Alpha	1	(B2)	-0.4116
4	Vir	Beta	3	(A1)	0.1363
9	Vir	Beta	5	(A1)	0.8458
5	Vir	Beta	1	(B2)	0.1735
10	Vir	Beta	2	(B2)	0.8981

2) State properties and S²

EOMSF-CCSD transition 1/A1

CCSD

S^2 calculation will be performed in double precision Excited state properties for EOMSF-CCSD transition 1/A1 Dipole moment (a.u.): 0.251378 (X 0.000000, Y 0.000000, Z -0.251378) R-squared (a.u.): 23.272158 (XX 10.587846, YY 5.830180, ZZ 6.854132) Gauge origin (a.u.): (0.000000, 0.000000, 0.000000) Angular momentum (a.u.) against gauge origin: (X 0.000000i, Y 0.000000i, Z 0.000000i) Traces of the OPDMs: Tr(AA) 4.000000, Tr(BB) 4.000000 $<S^{2} = 2.000864$

				0000	
Transition irrep.	EOM-SF state	Energy (eV)	S ²	Multiplicity	E _{ex} (eV)
1/A ₁	1/B ₂	0.0086	2.00	Triplet	0.0000
1/B ₂	1/A ₁	1.1777	0.00	Singlet	1.1691
2/A ₁	2/B ₂	2.2171	0.00	Singlet	2.2085
2/B ₂	2/A ₁	4.3607	0.00	Singlet	4.3521