# DFT Calculations & Energy/Force Decomposition Analysis

Martin Head-Gordon ISTCP Workshop — October 13, 2024



#### Goals

- Scientific Concepts:
  - Catalysis modeling
  - What effects does H<sub>2</sub> adsorption have on a copper surface?
  - What forces contribute to this process?
- Learning Objectives:
  - Geometry optimization using DFT
  - Visualize and interpret IR spectra in IQmol
  - Run and interpret force decomposition analysis calculations



# Part 1: Frequency of H<sub>2</sub>

- Create H<sub>2</sub> molecule in IQmol
  - Use 運 to minimize energy
- Job 1: Geometry Optimization
  - Calculate: Geometry
  - Manually enter method/basis:
    - Method: wB97M-V
    - Basis: def2-svpd
  - Charge = 0, Mult = 1
- Job 2: Frequency
  - Click green "+" button
  - Calculate: Frequency

|             |             |                               | IQmol                                   |          |         | nol                                         |                              |           |  |
|-------------|-------------|-------------------------------|-----------------------------------------|----------|---------|---------------------------------------------|------------------------------|-----------|--|
|             |             |                               | Model View                              | <b>I</b> | ) H 🍒 🧃 |                                             | 0 🖺 📃                        |           |  |
|             |             |                               | Global     Global     Global     Global |          |         |                                             |                              |           |  |
|             |             |                               | History:                                |          |         |                                             |                              |           |  |
|             |             |                               | Add atoms/bonds<br>Add atoms/bonds      |          |         |                                             |                              |           |  |
|             |             |                               |                                         |          |         |                                             |                              |           |  |
|             |             | Setup Advanced                |                                         |          |         | Generated Input Fil                         | e.                           |           |  |
|             |             |                               |                                         |          |         |                                             |                              |           |  |
| Job Section | Job 2       | C Edit                        | •                                       |          |         | H -1.12723<br>\$end<br>\$rem                |                              |           |  |
| Calculate   | Forces      | ᅌ Charge                      | 0                                       |          |         | BASIS = de<br>GUI = 2<br>JOB_TYPE =         | Optimization<br>Dmega-B97M-V |           |  |
| Method      | HF          | Multiplici                    | ity <u>1</u> 🗘                          |          |         | METHOD =<br>SCF_CONVERG<br>\$end            | Omega-B97M-V<br>ENCE = 8     |           |  |
| Basis       | 6-31G       | ECP                           | None                                    | 0        |         |                                             |                              |           |  |
| Exchange    | HF          | <ul> <li>Correlati</li> </ul> | on None                                 | v        |         | 000<br>Smolecule                            |                              |           |  |
|             |             |                               |                                         |          |         | read<br>\$end                               |                              |           |  |
| SCF Control |             |                               |                                         |          |         | \$rem<br>BASIS = d<br>GUI = 2<br>JOB_TYPE = |                              |           |  |
| Algorithm   | DIIS        | 📀 Conve                       | ergence 8                               | \$       |         | METHOD =<br>SCF_CONVERG<br>\$end            | Dmega-B97M-V                 |           |  |
| Guess       | SAD         | 😒 Max C                       | ycles 50                                | ÷        |         |                                             |                              |           |  |
| Second Ba   | asis None   | ᅌ Guess                       | Mix 0%                                  | ÷        |         |                                             |                              |           |  |
| Unrestr     | icted       | Du                            | al Basis Energy                         |          |         | Server Q-Ch                                 | em 😒                         | Submit    |  |
| Wavefunctio | on Analysis |                               |                                         |          |         | Deast                                       | Disable Contra               | la Canaal |  |
|             |             |                               |                                         |          |         | Reset                                       | Disable Contro               | ls Cancel |  |
|             |             |                               |                                         |          |         |                                             |                              |           |  |

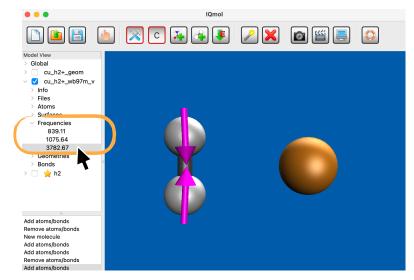


# Part 2: Frequency of H<sub>2</sub> Bound to Cu<sup>+</sup>

- Create H<sub>2</sub>...Cu<sup>+</sup> in IQmol
  - H-H bond: 0.8Å
  - Cu-H-H angle: 76°
  - Create Cu fragment:
     Opt (\`) in Mac, Alt in Linux/Windows
- Job 1: Geometry Optimization
  - Calculate: Geometry
  - Manually enter method/basis:
    - Method: wB97M-V
    - Basis: def2-svpd
  - Charge = +1, Mult = 1
- Job 2: Frequency
  - Click green "+" button
  - Calculate: Frequency

|                  | Setup                              | Advanced                                    | Generated Input File:                                                                          |  |  |  |
|------------------|------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|
| lob Section      | Job 1 📀                            | Edit 📑 드                                    | Smolecule<br>1 1<br>Cu 0.4117537 -0.0402635 0.0000000<br>H -1.1855664 0.4793123 0.0000000      |  |  |  |
| Calculate        | Geometry 📀                         | Charge 1                                    | H -1.2434158 -0.3245173 0.0000000<br>\$end                                                     |  |  |  |
| Method wB97M-V 🕑 |                                    | Multiplicity 1                              | <pre>\$rem BASIS = def2-svpd GUI = 2</pre>                                                     |  |  |  |
| Basis d          | lef2-svpd 💟                        | ECP None 😌                                  | JOB TYPE = Optimization<br>METHOD = wB97M-V<br>SCF_CONVERGENCE = 8<br>SYMMETRY = FALSE<br>Send |  |  |  |
| SCF Control      |                                    |                                             | 888                                                                                            |  |  |  |
| SCF COntrol      |                                    |                                             | Smolecule<br>read                                                                              |  |  |  |
| Algorithm        | DIIS                               | Convergence 8                               | Şend<br>Srem                                                                                   |  |  |  |
| Guess            | SAD                                | Max Cycles 50 🗘                             | BASIS = def2-svpd<br>GUI = 2<br>JOB TYPE = Frequency                                           |  |  |  |
| Second Basi      | s None                             | Guess Mix 0 %                               | METHOD = wB97M-V<br>SCF_CONVERGENCE = 8<br>SYMMETRY = FALSE                                    |  |  |  |
|                  |                                    | Dual Basis Energy                           |                                                                                                |  |  |  |
| Unrestric        |                                    | Dual Basis Energy                           |                                                                                                |  |  |  |
| 🗸 Use GEN        | _SCFMAN                            | Stability Analysis                          |                                                                                                |  |  |  |
| Use GEN_         | _SCFMAN<br>ell Singlet ROSCF       | Stability Analysis Generalized Hartree-Fock |                                                                                                |  |  |  |
| 🗸 Use GEN        | _SCFMAN<br>ell Singlet ROSCF       | Stability Analysis                          |                                                                                                |  |  |  |
| Use GEN_         | _SCFMAN<br>ell Singlet ROSCF       | Stability Analysis Generalized Hartree-Fock |                                                                                                |  |  |  |
| Use GEN_         | SCFMAN<br>ill Singlet ROSCF<br>SCF | Stability Analysis Generalized Hartree-Fock | Server Q-Chem 3 Submit                                                                         |  |  |  |

...

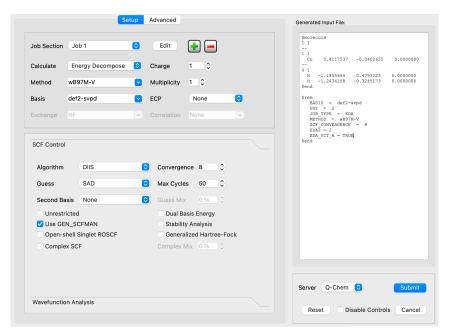

Model View > Global > \_\_\_\_\_ou\_h2+\_geom > \_\_\_\_\_ou\_h2+\_wb97m\_v

History: New molecule New molecule Add atoms/bonds Remove atoms/bo 🔀 H 🗛 承 🖡 🦻 🗙 🙆 🞬



## **Frequency Shift Results**

- Which mode corresponds to the H-H stretch?
  - Select modes under "Frequencies"
  - Can view coordinates in output file
- Compare to H-H stretch in H<sub>2</sub> alone
  - 1. What does the **difference in frequency** imply about the effect of the Cu<sup>+</sup> ion ("adsorption") on the H<sub>2</sub> bond strength?
  - 2. **Compare the H-H bond lengths** using the magic wand tool. Does this agree with the results from Q1?
- **Bonus:** Compare to B3LYP/6-31G. Which shift prediction is closest to experiment?




Frequencies: Free: 3783 cm<sup>-1</sup> Adsorbed: 4384 cm<sup>-1</sup> Bond Lengths: Free: 0.76 cm<sup>-1</sup> Adsorbed: 0.80 cm<sup>-1</sup>



### Part 3: Energy Decomposition Analysis

- Use optimized geometry from Part 1
- Setup
  - Calculate: Energy Decompose
  - Manually enter method/basis:
    - Method: wB97M-V
    - Basis: def2-svpd
  - Charge = +1, Mult = 1
  - Manual Modifications:
    - "EDA2 = 2"
    - "EDA\_VCT\_A = TRUE"
    - Separate fragments with "--"
    - Set charge/multiplicity for fragments
- Calculate again with a distant Cu<sup>+</sup> ion (~4Å)





## Energy Decomposition Analysis

- Open text-based output file
- Scroll to "Results of EDA2"
- Compare EDA for the "adsorbed" H<sub>2</sub>...Cu<sup>+</sup> complex to the "freed" one
  - Do the differences you observe make sense?
  - What are the largest contributors?



| "Adsorbed" EDA Output                     |
|-------------------------------------------|
| Simplified EDA Summary (kJ/mol)           |
|                                           |
| PREPARATION 0.0000                        |
| FROZEN 33.7723 (ELEC + PAULI + DISP)      |
| [ELEC + PAULI = 51.2768, DISP = -17.5045] |
| POLARIZATION -73.3734                     |
| CHARGE TRANSFER -52.8705                  |
| TOTAL $-92.4716$ (PRP + FRZ + POL + CT)   |
|                                           |

#### "Free" EDA Output Simplified EDA Summary (kJ/mol)

```
PREPARATION -0.0000

FROZEN -3.6415 (ELEC + PAULI + DISP)

[ELEC + PAULI = -3.5183, DISP = -0.1233]

POLARIZATION -1.5317

CHARGE TRANSFER -1.3020

TOTAL -6.4752 (PRP + FRZ + POL + CT)
```



#### Part 4: Force Decomposition Analysis

- Use optimized geometry from Part 1
- Reorder atoms (H=1, H=2, Cu=3) using Edit > Reindex Atoms
- Setup
  - Calculate: Forces
  - Manually enter method/basis:
    - Method: wB97M-V
    - Basis: def2-svpd
  - Charge = +1, Mult = 1
  - Manual Modifications:
    - "FDA = 1"
    - Separate fragments with "--"
    - Set charge/multiplicity for fragments

|                    |          | Setup Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Generated Input File:                                                   |
|--------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Job Section        | Job 1    | 📀 Edit 📑 💻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Smolecule<br>1 1<br><br>0 1                                             |
| Calculate          | Forces   | 🗘 Charge 0 🗘                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H -1.1855664 0.4793123 0.000000<br>H -1.2434158 -0.3245173 0.000000<br> |
| Method             | HF       | Multiplicity 2 🗘                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1<br>Cu 0.4117537 -0.0402635 0.000000<br>Send                         |
| Basis              | 6-31G    | ECP None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Srem<br>BASIS - def2-svpd<br>FDA = TRUE                                 |
| Exchange           | HF       | Correlation None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GUI = 2<br>JOB_TYPE = Force<br>METHOD = wB97M-V<br>SCF_CONVERGENCE = 8  |
| SCF Control        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$end                                                                   |
| Algorithm          | DIIS     | Convergence 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                         |
|                    | SAD      | ᅌ Max Cycles 50 🗘                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |
| Guess              | SAD      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |
| Guess<br>Second Ba |          | Imax by side         Imax by side           Imax by side         Imax by side |                                                                         |
|                    | sis None |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Server Q-Chem 😒 Subm                                                    |



#### **Force Decomposition Analysis**

- Which forces contribute?
  - Open text-based output file
  - Find FDA output section
- Which forces contribute to lengthening the H-H bond? Which contribute to shortening it?

|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cu_                                     | _h2+_wb97m                           | _v_fda_2.o                         | ut                                     |                                    |                                    |       |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|------------------------------------|----------------------------------------|------------------------------------|------------------------------------|-------|
|                                                 | The FORCE DECONDUCTION:           THE FORCE DECONDUCTION:           Parses convertiend from 4.x.           Printing forces in intermal<br>decision           Printing forces in intermal<br>decision           Data of the force<br>and the force           Data of the force           Data | Coordinates<br>CO<br>142,247<br>0.000<br>-0.001<br>on Analysis:<br>a:<br>3<br>22 -0.0000<br>00 -0.0000<br>23 -0.0000<br>27 -0.0000<br>27 -0.0000<br>27 -0.0000<br>28 -0.0000<br>28 -0.0000<br>28 -0.0000<br>29 -0.0000<br>29 -0.0000<br>20 -0.0000<br>20 -0.0000<br>21 -0.0000<br>22 -0.0000<br>23 -0.0000<br>24 -0.0000<br>25 -0.0000<br>26 -0.0000<br>27 -0.0000<br>28 - | E1ec<br>132.543<br>-444.765<br>-184.641 | 709<br>-70.286<br>661.654<br>274.770 | FRG<br>51.247<br>216.889<br>90.129 | 908.<br>377.992<br>-224.298<br>-51.633 | 07<br>53,842<br>-33,877<br>-22,359 | T09<br>-0.3253<br>34:135<br>16:136 | æ     |
| lew molecule<br>iemove molecule<br>iew molecule |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                      |                                    |                                        |                                    |                                    | Close |

| Printing forces in in | cernar coordinat | .es      |         |         |          |         |        |
|-----------------------|------------------|----------|---------|---------|----------|---------|--------|
| Coord.                | GD               | Elec     | VDW     | FRZ     | POL      | СТ      | TOT    |
| Bond H1-H2            | -142.247         | 121.563  | -70.296 | 51.267  | 37.932   | 52.842  | -0.205 |
| Bond H1-Cu1           | 0.000            | -444.765 | 661.654 | 216.889 | -124.298 | -53.877 | 38.715 |
| Angle H2-H1-Cu1       | -0.001           | -184.641 | 274.770 | 90.129  | -51.633  | -22.359 | 16.136 |